Partial Answers to 1.4 Homework

3. 78 = 3 flats (each worth 25) + no rods + 3 units = **303**₅

6. Since 234_5 is *in* base 5, we place the number into the base 5 columns:

5^2	5^{1}	5^0	
25's	5's	1's	
2	3	4	
2×25	3×5	4×1	

 $= 2 \times 25 + 5 \times 3 + 4 \times 1 = 50 + 15 + 4 = 69$. (The number 69 is in base 10.) We can also picture this as 2 base-5 flats, 3 rods and 4 units.

7. Since 71 is *not in* base 5, we do *not* place 71 into the base 5 columns. Instead, we try to figure out how many flats, or 25's, we will need to make 71, then how many rods and units we will need.

5^2	5^{1}	5^0	- 71
25's	5's	1's	= /1
?	?	?	

 $71 \div 25 = 2.84$, so we will need 2 flats. Place the 2 flats into the table. $2 \times 25 = 50$ so we will have 71 - 50 = 21 left.

To make 21, we will need 4 rods (since rods are each worth 5, and $4 \times 5=20$) and 1

5^2	5^{1}	5^0	
25's 5's		1's	
2	4	1	
2×25	4×5	1×1	

unit.

8.

So 71 (in base 10) = 241_5 (in base 5)

We can also picture this as 2 base-5 flats, 4 rods and 1 unit.

a.	$91 = 231_6.$	d.	$51 = 110011_2$
b.	$143_7 = 80.$	e.	$4E8_{12} = 716$
c.	$10111_2 = 23.$	f.	$50 = 101_7$

Section 1.4, p.2