Partial Answers to 1.4 Homework

3. $78=3$ flats (each worth 25$)+$ no rods +3 units $=\mathbf{3 0 3 5}$

4. Since 234_{5} is in base 5 , we place the number into the base 5 columns:

$\mathbf{5}^{2}$ $\mathbf{2 5} \mathbf{s}$	$\mathbf{5}^{\mathbf{1}}$ $\mathbf{5} \mathbf{}$	$\mathbf{5}^{\mathbf{0}}$ $\mathbf{1} \mathbf{}$
2	3	4
2×25	3×5	4×1

$=2 \times 25+5 \times 3+4 \times 1=50+15+4=\mathbf{6 9}$. (The number 69 is in base 10 .) We can also picture this as 2 base -5 flats, 3 rods and 4 units.
7. Since 71 is not in base 5 , we do not place 71 into the base 5 columns. Instead, we try to figure out how many flats, or 25 's, we will need to make 71 , then how many rods and units we will need.

$\mathbf{5}^{\mathbf{2}}$	$\mathbf{5}^{\mathbf{1}}$	$\mathbf{5}^{\mathbf{0}}$
$\mathbf{2 5 ' s}^{\mathbf{\prime}}$	$\mathbf{5 ' s}^{\mathbf{\prime}}$	1's
?	?	?

$$
=71
$$

$71 \div 25=2.84$, so we will need 2 flats. Place the 2 flats into the table.
$2 \times 25=50 \quad$ so we will have $71-50=21$ left.
To make 21 , we will need 4 rods (since rods are each worth 5 , and $4 \times 5=20$) and 1 unit.

$\mathbf{5}^{\mathbf{2}}$ $\mathbf{2 5} \mathbf{\prime}$	$\mathbf{5}^{\mathbf{1}}$ $\mathbf{5} \mathbf{}$	$\mathbf{5}^{\mathbf{0}}$ $\mathbf{1} \mathbf{}$ 2
2	4	1
2×25	4×5	1×1

So $71($ in base 10$)=\mathbf{2 4 1 5}($ in base 5$)$
We can also picture this as 2 base- 5 flats, 4 rods and 1 unit.
8.
a. $91=231_{6}$.
b. $143_{7}=80$.
c. $10111_{2}=23$.
d. $51=110011_{2}$
e. $4 \mathrm{E} 8_{12}=716$
f. $50=101_{7}$

Section 1.4, p. 2

